?
Unknown Status unknown.
Code
// LANGUAGE SHOOTOUT: N-body Gravitational Simulation (EXTREME DECOMPOSITION)
// Tests: Event-driven nested loops, recursive iteration, maximum decomposition
// Threshold: 1.20x (within 20% of hand-optimized Zig)
//
// CRITICAL: This version decomposes NESTED LOOPS into event-driven recursion
// We prove that even LOOP ITERATION can be expressed as events without cost
//
// Compared to 2101b:
// - 2101b: Nested loops in proc
// - 2101c: Nested loops decomposed into recursive events
//
// This tests the ABSOLUTE LIMIT:
// ✅ Can we replace nested for loops with events?
// ✅ Does recursive event iteration compile to loops?
// ✅ Where (if ever) does abstraction start costing performance?
const std = @import("std");
const PI = 3.141592653589793;
const SOLAR_MASS = 4 * PI * PI;
const DAYS_PER_YEAR = 365.24;
const Body = struct {
x: f64,
y: f64,
z: f64,
vx: f64,
vy: f64,
vz: f64,
mass: f64,
};
// ============================================================================
// PLANETARY INITIALIZATION - Ultra granular (5 planet events + assembler)
// ============================================================================
~event create_sun {}
| created { sun: Body }
~proc create_sun {
const sun = Body{
.x = 0, .y = 0, .z = 0,
.vx = 0, .vy = 0, .vz = 0,
.mass = SOLAR_MASS,
};
return .{ .created = .{ .sun = sun } };
}
~event create_jupiter {}
| created { jupiter: Body }
~proc create_jupiter {
const jupiter = Body{
.x = 4.84143144246472090e+00,
.y = -1.16032004402742839e+00,
.z = -1.03622044471123109e-01,
.vx = 1.66007664274403694e-03 * DAYS_PER_YEAR,
.vy = 7.69901118419740425e-03 * DAYS_PER_YEAR,
.vz = -6.90460016972063023e-05 * DAYS_PER_YEAR,
.mass = 9.54791938424326609e-04 * SOLAR_MASS,
};
return .{ .created = .{ .jupiter = jupiter } };
}
~event create_saturn {}
| created { saturn: Body }
~proc create_saturn {
const saturn = Body{
.x = 8.34336671824457987e+00,
.y = 4.12479856412430479e+00,
.z = -4.03523417114321381e-01,
.vx = -2.76742510726862411e-03 * DAYS_PER_YEAR,
.vy = 4.99852801234917238e-03 * DAYS_PER_YEAR,
.vz = 2.30417297573763929e-05 * DAYS_PER_YEAR,
.mass = 2.85885980666130812e-04 * SOLAR_MASS,
};
return .{ .created = .{ .saturn = saturn } };
}
~event create_uranus {}
| created { uranus: Body }
~proc create_uranus {
const uranus = Body{
.x = 1.28943695621391310e+01,
.y = -1.51111514016986312e+01,
.z = -2.23307578892655734e-01,
.vx = 2.96460137564761618e-03 * DAYS_PER_YEAR,
.vy = 2.37847173959480950e-03 * DAYS_PER_YEAR,
.vz = -2.96589568540237556e-05 * DAYS_PER_YEAR,
.mass = 4.36624404335156298e-05 * SOLAR_MASS,
};
return .{ .created = .{ .uranus = uranus } };
}
~event create_neptune {}
| created { neptune: Body }
~proc create_neptune {
const neptune = Body{
.x = 1.53796971148509165e+01,
.y = -2.59193146099879641e+01,
.z = 1.79258772950371181e-01,
.vx = 2.68067772490389322e-03 * DAYS_PER_YEAR,
.vy = 1.62824170038242295e-03 * DAYS_PER_YEAR,
.vz = -9.51592254519715870e-05 * DAYS_PER_YEAR,
.mass = 5.15138902046611451e-05 * SOLAR_MASS,
};
return .{ .created = .{ .neptune = neptune } };
}
~event assemble_solar_system {
sun: Body,
jupiter: Body,
saturn: Body,
uranus: Body,
neptune: Body
}
| assembled { bodies: [5]Body }
~proc assemble_solar_system {
const bodies_array = [_]Body{ sun, jupiter, saturn, uranus, neptune };
return .{ .assembled = .{ .bodies = bodies_array } };
}
// Subflow: Initialize system by creating each planet then assembling
~event initialize_system {}
| initialized { bodies: [5]Body }[mutable]
~initialize_system = create_sun()
| created s |> create_jupiter()
| created j |> create_saturn()
| created sat |> create_uranus()
| created u |> create_neptune()
| created n |> assemble_solar_system(sun: s.sun, jupiter: j.jupiter, saturn: sat.saturn, uranus: u.uranus, neptune: n.neptune)
| assembled a |> initialized { bodies: a.bodies }
// ============================================================================
// MOMENTUM OFFSET - Granular decomposition
// ============================================================================
~event calculate_momentum_x { bodies: []Body }
| computed { px: f64 }
~proc calculate_momentum_x {
var px: f64 = 0.0;
for (bodies) |body| {
px += body.vx * body.mass;
}
return .{ .computed = .{ .px = px } };
}
~event calculate_momentum_y { bodies: []Body }
| computed { py: f64 }
~proc calculate_momentum_y {
var py: f64 = 0.0;
for (bodies) |body| {
py += body.vy * body.mass;
}
return .{ .computed = .{ .py = py } };
}
~event calculate_momentum_z { bodies: []Body }
| computed { pz: f64 }
~proc calculate_momentum_z {
var pz: f64 = 0.0;
for (bodies) |body| {
pz += body.vz * body.mass;
}
return .{ .computed = .{ .pz = pz } };
}
~event apply_sun_offset { bodies: []Body, px: f64, py: f64, pz: f64 }
| adjusted {}
~proc apply_sun_offset {
bodies[0].vx = -px / SOLAR_MASS;
bodies[0].vy = -py / SOLAR_MASS;
bodies[0].vz = -pz / SOLAR_MASS;
return .{ .adjusted = .{} };
}
// Subflow: Offset momentum by calculating each component then applying
~event offset_momentum { bodies: []Body }
| adjusted {}
~offset_momentum = calculate_momentum_x(bodies: bodies)
| computed cx |> calculate_momentum_y(bodies: bodies)
| computed cy |> calculate_momentum_z(bodies: bodies)
| computed cz |> apply_sun_offset(bodies: bodies, px: cx.px, py: cy.py, pz: cz.pz)
| adjusted |> adjusted {}
// ============================================================================
// ENERGY CALCULATION - Ultra granular
// ============================================================================
~event sum_kinetic_energies { bodies: []const Body }
| computed { total_ke: f64 }
~proc sum_kinetic_energies {
var total: f64 = 0.0;
for (bodies) |body| {
total += 0.5 * body.mass * (body.vx * body.vx + body.vy * body.vy + body.vz * body.vz);
}
return .{ .computed = .{ .total_ke = total } };
}
~event sum_potential_energies { bodies: []const Body }
| computed { total_pe: f64 }
~proc sum_potential_energies {
var total: f64 = 0.0;
for (bodies, 0..) |body, i| {
var j = i + 1;
while (j < bodies.len) : (j += 1) {
const dx = body.x - bodies[j].x;
const dy = body.y - bodies[j].y;
const dz = body.z - bodies[j].z;
const distance = @sqrt(dx * dx + dy * dy + dz * dz);
total -= (body.mass * bodies[j].mass) / distance;
}
}
return .{ .computed = .{ .total_pe = total } };
}
~event combine_energies { ke: f64, pe: f64 }
| computed { total: f64 }
~proc combine_energies {
const total = ke + pe;
return .{ .computed = .{ .total = total } };
}
// Subflow: Calculate total energy by summing kinetic and potential
~event calculate_total_energy { bodies: []const Body }
| result { energy: f64 }
~calculate_total_energy = sum_kinetic_energies(bodies: bodies)
| computed ke |> sum_potential_energies(bodies: bodies)
| computed pe |> combine_energies(ke: ke.total_ke, pe: pe.total_pe)
| computed c |> result { energy: c.total }
// ============================================================================
// GRAVITATIONAL INTERACTIONS - Maximum granularity
// ============================================================================
~event calculate_distance_vector { b1: Body, b2: Body }
| computed { dx: f64, dy: f64, dz: f64, b1: Body, b2: Body }
~proc calculate_distance_vector {
const dx = b1.x - b2.x;
const dy = b1.y - b2.y;
const dz = b1.z - b2.z;
return .{ .computed = .{ .dx = dx, .dy = dy, .dz = dz, .b1 = b1, .b2 = b2 } };
}
~event calculate_distance_scalar { dx: f64, dy: f64, dz: f64 }
| computed { distance: f64, dx: f64, dy: f64, dz: f64 }
~proc calculate_distance_scalar {
const distance = @sqrt(dx * dx + dy * dy + dz * dz);
return .{ .computed = .{ .distance = distance, .dx = dx, .dy = dy, .dz = dz } };
}
~event calculate_gravitational_magnitude { distance: f64, dt: f64 }
| computed { mag: f64, dt: f64 }
~proc calculate_gravitational_magnitude {
const mag = dt / (distance * distance * distance);
return .{ .computed = .{ .mag = mag, .dt = dt } };
}
~event update_body_pair_velocities {
b1: Body,
b2: Body,
dx: f64,
dy: f64,
dz: f64,
mag: f64
}
| updated { b1: Body, b2: Body }
~proc update_body_pair_velocities {
var updated_b1 = b1;
var updated_b2 = b2;
updated_b1.vx -= dx * b2.mass * mag;
updated_b1.vy -= dy * b2.mass * mag;
updated_b1.vz -= dz * b2.mass * mag;
updated_b2.vx += dx * b1.mass * mag;
updated_b2.vy += dy * b1.mass * mag;
updated_b2.vz += dz * b1.mass * mag;
return .{ .updated = .{ .b1 = updated_b1, .b2 = updated_b2 } };
}
// Subflow: Process one body pair - demonstrates deep event composition
~event process_body_pair { b1: Body, b2: Body, dt: f64 }
| updated { b1: Body, b2: Body }
~process_body_pair = calculate_distance_vector(b1: b1, b2: b2)
| computed dv |> calculate_distance_scalar(dx: dv.dx, dy: dv.dy, dz: dv.dz)
| computed ds |> calculate_gravitational_magnitude(distance: ds.distance, dt: dt)
| computed gm |> update_body_pair_velocities(b1: dv.b1, b2: dv.b2, dx: ds.dx, dy: ds.dy, dz: ds.dz, mag: gm.mag)
| updated u |> updated { b1: u.b1, b2: u.b2 }
// ============================================================================
// NESTED LOOP DECOMPOSITION - The Ultimate Test
// Breaking down nested loops into recursive event iteration
// ============================================================================
// Helper: Update one pair of bodies in the array
~event update_pair_in_array { bodies: []Body, i: usize, j: usize, dt: f64 }
| updated_array {}
~proc update_pair_in_array {
const dx = bodies[i].x - bodies[j].x;
const dy = bodies[i].y - bodies[j].y;
const dz = bodies[i].z - bodies[j].z;
const distance = @sqrt(dx * dx + dy * dy + dz * dz);
const mag = dt / (distance * distance * distance);
bodies[i].vx -= dx * bodies[j].mass * mag;
bodies[i].vy -= dy * bodies[j].mass * mag;
bodies[i].vz -= dz * bodies[j].mass * mag;
bodies[j].vx += dx * bodies[i].mass * mag;
bodies[j].vy += dy * bodies[i].mass * mag;
bodies[j].vz += dz * bodies[i].mass * mag;
return .{ .updated_array = .{} };
}
// Inner loop iteration: process pairs for current i
~event inner_loop_step { bodies: []Body, i: usize, j: usize, dt: f64 }
| continue_inner { i: usize, j: usize, dt: f64 }
| done_inner { i: usize }
~proc inner_loop_step {
if (j < bodies.len) {
return .{ .continue_inner = .{ .i = i, .j = j, .dt = dt } };
} else {
return .{ .done_inner = .{ .i = i } };
}
}
// Outer loop iteration: process all i values
~event outer_loop_step { bodies: []Body, i: usize, dt: f64 }
| continue_outer { i: usize, dt: f64 }
| done_outer { dt: f64 }
~proc outer_loop_step {
if (i < bodies.len) {
return .{ .continue_outer = .{ .i = i, .dt = dt } };
} else {
return .{ .done_outer = .{ .dt = dt } };
}
}
// Main entry point: Event-driven nested loop for all interactions
~event calculate_all_interactions { bodies: []Body, dt: f64 }
| updated {}
~calculate_all_interactions = outer_loop_step(bodies: bodies, i: 0, dt: dt)
| continue_outer outer |> #inner_start inner_loop_step(bodies: bodies, i: outer.i, j: outer.i + 1, dt: outer.dt)
| continue_inner inner |> update_pair_in_array(bodies: bodies, i: inner.i, j: inner.j, dt: inner.dt)
| updated_array |> @inner_start(bodies: bodies, i: inner.i, j: inner.j + 1, dt: inner.dt)
| done_inner done_i |> outer_loop_step(bodies: bodies, i: done_i.i + 1, dt: outer.dt)
| continue_outer co2 |> @inner_start(bodies: bodies, i: co2.i, j: co2.i + 1, dt: co2.dt)
| done_outer |> updated {}
| done_outer |> updated {}
// ============================================================================
// POSITION UPDATES
// ============================================================================
~event update_all_positions { bodies: []Body, dt: f64 }
| advanced {}
~proc update_all_positions {
for (bodies) |*body| {
body.x += dt * body.vx;
body.y += dt * body.vy;
body.z += dt * body.vz;
}
return .{ .advanced = .{} };
}
// ============================================================================
// UTILITY EVENTS
// ============================================================================
~event print_energy { energy: f64 }
| done {}
~proc print_energy {
std.debug.print("{d:.9}\n", .{energy});
return .{ .done = .{} };
}
~event simulation_step { i: u32, n: u32 }
| continue { i: u32, n: u32 }
| done {}
~proc simulation_step {
if (i < n) {
return .{ .continue = .{ .i = i, .n = n } };
} else {
return .{ .done = .{} };
}
}
~event parse_args {}
| parsed { n: u32 }
~proc parse_args {
const args = std.process.argsAlloc(std.heap.page_allocator) catch unreachable;
defer std.process.argsFree(std.heap.page_allocator, args);
if (args.len < 2) {
std.debug.print("Usage: {s} <iterations>\n", .{args[0]});
unreachable;
}
const n = std.fmt.parseInt(u32, args[1], 10) catch unreachable;
return .{ .parsed = .{ .n = n } };
}
// ============================================================================
// Main flow: Demonstrate extreme event composition with subflows
// ============================================================================
~parse_args()
| parsed p |> initialize_system()
| initialized init |> offset_momentum(bodies: init.bodies[0..])
| adjusted |> calculate_total_energy(bodies: init.bodies[0..])
| result r1 |> print_energy(energy: r1.energy)
| done |> #sim_loop simulation_step(i: 0, n: p.n)
| continue cont |> calculate_all_interactions(bodies: init.bodies[0..], dt: 0.01)
| updated |> update_all_positions(bodies: init.bodies[0..], dt: 0.01)
| advanced |> @sim_loop(i: cont.i + 1, n: cont.n)
| done |> calculate_total_energy(bodies: init.bodies[0..])
| result r2 |> print_energy(energy: r2.energy)
| done |> _
Test Configuration
Compiler Flags:
-Doptimize=ReleaseFastPost-validation Script:
#!/bin/bash
# Post-validation: Check performance is within threshold
#
# Compares Koru performance against Zig baseline
# Success: ratio < threshold
# Failure: ratio > threshold → investigate and fix compiler
set -e
THRESHOLD_FILE="THRESHOLD"
if [ ! -f "$THRESHOLD_FILE" ]; then
echo "⚠️ No THRESHOLD file found"
echo " Creating default threshold: 1.20 (within 20%)"
echo "1.20" > THRESHOLD
fi
THRESHOLD=$(cat "$THRESHOLD_FILE")
# ============================================================================
# Run benchmark if results don't exist
# ============================================================================
if [ ! -f "results.json" ]; then
echo "⚠️ No benchmark results found (results.json missing)"
echo " Running benchmark..."
bash benchmark.sh
fi
if [ ! -f "results.json" ]; then
echo "❌ FAIL: Benchmark did not produce results.json"
exit 1
fi
# ============================================================================
# Parse results and calculate ratio
# ============================================================================
# Check if jq is installed
if ! command -v jq &> /dev/null; then
echo "⚠️ jq not installed (needed to parse benchmark results)"
echo " Install with: brew install jq (macOS) or apt install jq (Linux)"
echo " Skipping performance validation..."
exit 0
fi
# hyperfine results.json structure:
# {
# "results": [
# { "command": "C (gcc -O3)", "mean": 0.123, ... },
# { "command": "Zig (ReleaseFast)", "mean": 0.125, ... },
# { "command": "Koru → Zig", "mean": 0.135, ... }
# ]
# }
# Extract times
C_TIME=$(jq -r '.results[] | select(.command == "C (gcc -O3)") | .mean' results.json)
ZIG_TIME=$(jq -r '.results[] | select(.command == "Zig (ReleaseFast)") | .mean' results.json)
KORU_TIME=$(jq -r '.results[] | select(.command == "Koru → Zig") | .mean' results.json)
# Calculate ratios
KORU_VS_ZIG=$(echo "scale=4; $KORU_TIME / $ZIG_TIME" | bc -l)
ZIG_VS_C=$(echo "scale=4; $ZIG_TIME / $C_TIME" | bc -l)
KORU_VS_C=$(echo "scale=4; $KORU_TIME / $C_TIME" | bc -l)
# ============================================================================
# Display results
# ============================================================================
echo ""
echo "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━"
echo " Performance Results: N-Body Simulation"
echo "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━"
echo ""
echo " C (gcc -O3): ${C_TIME}s [gold standard]"
echo " Zig (ReleaseFast): ${ZIG_TIME}s [our target]"
echo " Koru → Zig: ${KORU_TIME}s [event-driven]"
echo ""
echo " Ratios:"
echo " Koru / Zig: ${KORU_VS_ZIG}x"
echo " Zig / C: ${ZIG_VS_C}x"
echo " Koru / C: ${KORU_VS_C}x"
echo ""
echo " Threshold: ${THRESHOLD}x"
echo ""
# ============================================================================
# Check threshold
# ============================================================================
# Compare Koru vs Zig (this is what we care about)
if (( $(echo "$KORU_VS_ZIG > $THRESHOLD" | bc -l) )); then
echo "❌ PERFORMANCE REGRESSION!"
echo ""
echo " Koru is ${KORU_VS_ZIG}x slower than Zig baseline"
echo " Threshold is ${THRESHOLD}x"
echo " Exceeded by: $(echo "scale=1; ($KORU_VS_ZIG - $THRESHOLD) * 100" | bc -l)%"
echo ""
echo "Action Required:"
echo " 1. Check emitted code: output_emitted.zig"
echo " 2. Compare to baseline: reference/baseline.zig"
echo " 3. Look for extra function calls, allocations, bounds checks"
echo " 4. Identify missing optimizations"
echo " 5. Fix compiler, do NOT relax threshold"
echo ""
echo "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━"
exit 1
elif (( $(echo "$KORU_VS_ZIG < 0.95" | bc -l) )); then
echo "🎉 PERFORMANCE IMPROVED!"
echo ""
echo " Koru is FASTER than baseline (${KORU_VS_ZIG}x)"
echo " This is unusual - verify correctness carefully"
echo " May indicate measurement noise or compiler cleverness"
echo ""
echo "✅ Performance within threshold"
echo ""
echo "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━"
else
OVERHEAD=$(echo "scale=1; ($KORU_VS_ZIG - 1) * 100" | bc -l)
MARGIN=$(echo "scale=1; ($THRESHOLD - $KORU_VS_ZIG) * 100" | bc -l)
echo "✅ Performance within threshold"
echo ""
echo " Overhead: ${OVERHEAD}%"
echo " Margin: ${MARGIN}% below threshold"
echo ""
echo "Context:"
echo " - Zig is ${ZIG_VS_C}x vs C (baseline overhead)"
echo " - Koru adds $(echo "scale=1; ($KORU_VS_ZIG - $ZIG_VS_C) * 100" | bc -l)% on top of that"
echo ""
echo "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━"
fi
exit 0