?
Unknown Status unknown.
Code
// LANGUAGE SHOOTOUT: N-body Gravitational Simulation
// HONEST VERSION: Uses Koru ~for for the hot loops
//
// This is the REAL test - can ~for match Zig's loop performance?
const std = @import("std");
~import "$std/control"
const PI = 3.141592653589793;
const SOLAR_MASS = 4 * PI * PI;
const DAYS_PER_YEAR = 365.24;
const Body = struct {
x: f64,
y: f64,
z: f64,
vx: f64,
vy: f64,
vz: f64,
mass: f64,
};
// ============================================================================
// Event: Initialize planetary bodies
// ============================================================================
~event initialize_bodies {}
| initialized { bodies: [5]Body }
~proc initialize_bodies {
const bodies_data = [_]Body{
.{ .x = 0, .y = 0, .z = 0, .vx = 0, .vy = 0, .vz = 0, .mass = SOLAR_MASS },
.{
.x = 4.84143144246472090e+00,
.y = -1.16032004402742839e+00,
.z = -1.03622044471123109e-01,
.vx = 1.66007664274403694e-03 * DAYS_PER_YEAR,
.vy = 7.69901118419740425e-03 * DAYS_PER_YEAR,
.vz = -6.90460016972063023e-05 * DAYS_PER_YEAR,
.mass = 9.54791938424326609e-04 * SOLAR_MASS,
},
.{
.x = 8.34336671824457987e+00,
.y = 4.12479856412430479e+00,
.z = -4.03523417114321381e-01,
.vx = -2.76742510726862411e-03 * DAYS_PER_YEAR,
.vy = 4.99852801234917238e-03 * DAYS_PER_YEAR,
.vz = 2.30417297573763929e-05 * DAYS_PER_YEAR,
.mass = 2.85885980666130812e-04 * SOLAR_MASS,
},
.{
.x = 1.28943695621391310e+01,
.y = -1.51111514016986312e+01,
.z = -2.23307578892655734e-01,
.vx = 2.96460137564761618e-03 * DAYS_PER_YEAR,
.vy = 2.37847173959480950e-03 * DAYS_PER_YEAR,
.vz = -2.96589568540237556e-05 * DAYS_PER_YEAR,
.mass = 4.36624404335156298e-05 * SOLAR_MASS,
},
.{
.x = 1.53796971148509165e+01,
.y = -2.59193146099879641e+01,
.z = 1.79258772950371181e-01,
.vx = 2.68067772490389322e-03 * DAYS_PER_YEAR,
.vy = 1.62824170038242295e-03 * DAYS_PER_YEAR,
.vz = -9.51592254519715870e-05 * DAYS_PER_YEAR,
.mass = 5.15138902046611451e-05 * SOLAR_MASS,
},
};
return .{ .initialized = .{ .bodies = bodies_data } };
}
// ============================================================================
// Event: Process ONE body pair - the atomic unit of computation
// ============================================================================
~event process_pair { bodies: []Body, i: usize, j: usize, dt: f64 }
| done {}
~proc process_pair {
const dx = bodies[i].x - bodies[j].x;
const dy = bodies[i].y - bodies[j].y;
const dz = bodies[i].z - bodies[j].z;
const distance = @sqrt(dx * dx + dy * dy + dz * dz);
const mag = dt / (distance * distance * distance);
bodies[i].vx -= dx * bodies[j].mass * mag;
bodies[i].vy -= dy * bodies[j].mass * mag;
bodies[i].vz -= dz * bodies[j].mass * mag;
bodies[j].vx += dx * bodies[i].mass * mag;
bodies[j].vy += dy * bodies[i].mass * mag;
bodies[j].vz += dz * bodies[i].mass * mag;
return .{ .done = .{} };
}
// ============================================================================
// Event: Update ONE body position - atomic unit
// ============================================================================
~event update_position { body: *Body, dt: f64 }
| done {}
~proc update_position {
body.x += dt * body.vx;
body.y += dt * body.vy;
body.z += dt * body.vz;
return .{ .done = .{} };
}
// ============================================================================
// Other events (same as before)
// ============================================================================
~event offset_momentum { bodies: []Body }
| adjusted {}
~proc offset_momentum {
var px: f64 = 0.0;
var py: f64 = 0.0;
var pz: f64 = 0.0;
for (bodies) |body| {
px += body.vx * body.mass;
py += body.vy * body.mass;
pz += body.vz * body.mass;
}
bodies[0].vx = -px / SOLAR_MASS;
bodies[0].vy = -py / SOLAR_MASS;
bodies[0].vz = -pz / SOLAR_MASS;
return .{ .adjusted = .{} };
}
~event calculate_energy { bodies: []const Body }
| result { energy: f64 }
~proc calculate_energy {
var e: f64 = 0.0;
for (bodies, 0..) |body, i| {
e += 0.5 * body.mass * (body.vx * body.vx + body.vy * body.vy + body.vz * body.vz);
var j = i + 1;
while (j < bodies.len) : (j += 1) {
const dx = body.x - bodies[j].x;
const dy = body.y - bodies[j].y;
const dz = body.z - bodies[j].z;
const distance = @sqrt(dx * dx + dy * dy + dz * dz);
e -= (body.mass * bodies[j].mass) / distance;
}
}
return .{ .result = .{ .energy = e } };
}
~event print_energy { energy: f64 }
| done {}
~proc print_energy {
std.debug.print("{d:.9}\n", .{energy});
return .{ .done = .{} };
}
~event parse_args {}
| parsed { n: u32 }
~proc parse_args {
const args = std.process.argsAlloc(std.heap.page_allocator) catch unreachable;
defer std.process.argsFree(std.heap.page_allocator, args);
if (args.len < 2) {
std.debug.print("Usage: {s} <iterations>\n", .{args[0]});
unreachable;
}
const n = std.fmt.parseInt(u32, args[1], 10) catch unreachable;
return .{ .parsed = .{ .n = n } };
}
// ============================================================================
// Main flow: Using Koru ~for for the HOT LOOPS
// ============================================================================
// Start simple: just test the outer simulation loop with ~for
// The body loops are still in process_all_pairs for now
~event process_all_pairs { bodies: []Body, dt: f64 }
| done {}
// This uses Koru ~for for the OUTER loop
~process_all_pairs = for(0..5)
| each i |> for(i.val+1..5)
| each j |> process_pair(bodies: bodies, i: i.val, j: j.val, dt: dt)
| done |> _
| done |> done {}
~event update_all_positions { bodies: []Body, dt: f64 }
| done {}
~update_all_positions = for(0..5)
| each k |> update_position(body: &bodies[k.val], dt: dt)
| done |> _
| done |> done {}
~parse_args()
| parsed p |> initialize_bodies()
| initialized init[mutable] |> offset_momentum(bodies: init.bodies[0..])
| adjusted |> calculate_energy(bodies: init.bodies[0..])
| result r1 |> print_energy(energy: r1.energy)
| done |> for(0..p.n)
| each |> process_all_pairs(bodies: init.bodies[0..], dt: 0.01)
| done |> update_all_positions(bodies: init.bodies[0..], dt: 0.01)
| done |> calculate_energy(bodies: init.bodies[0..])
| result r2 |> print_energy(energy: r2.energy)
| done |> _
Imported Files
// LANGUAGE SHOOTOUT: N-body Gravitational Simulation
// HONEST VERSION: Uses Koru ~for for the hot loops
//
// This is the REAL test - can ~for match Zig's loop performance?
const std = @import("std");
~import "$std/control"
const PI = 3.141592653589793;
const SOLAR_MASS = 4 * PI * PI;
const DAYS_PER_YEAR = 365.24;
const Body = struct {
x: f64,
y: f64,
z: f64,
vx: f64,
vy: f64,
vz: f64,
mass: f64,
};
// ============================================================================
// Event: Initialize planetary bodies
// ============================================================================
~event initialize_bodies {}
| initialized { bodies: [5]Body }
~proc initialize_bodies {
const bodies_data = [_]Body{
.{ .x = 0, .y = 0, .z = 0, .vx = 0, .vy = 0, .vz = 0, .mass = SOLAR_MASS },
.{
.x = 4.84143144246472090e+00,
.y = -1.16032004402742839e+00,
.z = -1.03622044471123109e-01,
.vx = 1.66007664274403694e-03 * DAYS_PER_YEAR,
.vy = 7.69901118419740425e-03 * DAYS_PER_YEAR,
.vz = -6.90460016972063023e-05 * DAYS_PER_YEAR,
.mass = 9.54791938424326609e-04 * SOLAR_MASS,
},
.{
.x = 8.34336671824457987e+00,
.y = 4.12479856412430479e+00,
.z = -4.03523417114321381e-01,
.vx = -2.76742510726862411e-03 * DAYS_PER_YEAR,
.vy = 4.99852801234917238e-03 * DAYS_PER_YEAR,
.vz = 2.30417297573763929e-05 * DAYS_PER_YEAR,
.mass = 2.85885980666130812e-04 * SOLAR_MASS,
},
.{
.x = 1.28943695621391310e+01,
.y = -1.51111514016986312e+01,
.z = -2.23307578892655734e-01,
.vx = 2.96460137564761618e-03 * DAYS_PER_YEAR,
.vy = 2.37847173959480950e-03 * DAYS_PER_YEAR,
.vz = -2.96589568540237556e-05 * DAYS_PER_YEAR,
.mass = 4.36624404335156298e-05 * SOLAR_MASS,
},
.{
.x = 1.53796971148509165e+01,
.y = -2.59193146099879641e+01,
.z = 1.79258772950371181e-01,
.vx = 2.68067772490389322e-03 * DAYS_PER_YEAR,
.vy = 1.62824170038242295e-03 * DAYS_PER_YEAR,
.vz = -9.51592254519715870e-05 * DAYS_PER_YEAR,
.mass = 5.15138902046611451e-05 * SOLAR_MASS,
},
};
return .{ .initialized = .{ .bodies = bodies_data } };
}
// ============================================================================
// Event: Process ONE body pair - the atomic unit of computation
// ============================================================================
~event process_pair { bodies: []Body, i: usize, j: usize, dt: f64 }
| done {}
~proc process_pair {
const dx = bodies[i].x - bodies[j].x;
const dy = bodies[i].y - bodies[j].y;
const dz = bodies[i].z - bodies[j].z;
const distance = @sqrt(dx * dx + dy * dy + dz * dz);
const mag = dt / (distance * distance * distance);
bodies[i].vx -= dx * bodies[j].mass * mag;
bodies[i].vy -= dy * bodies[j].mass * mag;
bodies[i].vz -= dz * bodies[j].mass * mag;
bodies[j].vx += dx * bodies[i].mass * mag;
bodies[j].vy += dy * bodies[i].mass * mag;
bodies[j].vz += dz * bodies[i].mass * mag;
return .{ .done = .{} };
}
// ============================================================================
// Event: Update ONE body position - atomic unit
// ============================================================================
~event update_position { body: *Body, dt: f64 }
| done {}
~proc update_position {
body.x += dt * body.vx;
body.y += dt * body.vy;
body.z += dt * body.vz;
return .{ .done = .{} };
}
// ============================================================================
// Other events (same as before)
// ============================================================================
~event offset_momentum { bodies: []Body }
| adjusted {}
~proc offset_momentum {
var px: f64 = 0.0;
var py: f64 = 0.0;
var pz: f64 = 0.0;
for (bodies) |body| {
px += body.vx * body.mass;
py += body.vy * body.mass;
pz += body.vz * body.mass;
}
bodies[0].vx = -px / SOLAR_MASS;
bodies[0].vy = -py / SOLAR_MASS;
bodies[0].vz = -pz / SOLAR_MASS;
return .{ .adjusted = .{} };
}
~event calculate_energy { bodies: []const Body }
| result { energy: f64 }
~proc calculate_energy {
var e: f64 = 0.0;
for (bodies, 0..) |body, i| {
e += 0.5 * body.mass * (body.vx * body.vx + body.vy * body.vy + body.vz * body.vz);
var j = i + 1;
while (j < bodies.len) : (j += 1) {
const dx = body.x - bodies[j].x;
const dy = body.y - bodies[j].y;
const dz = body.z - bodies[j].z;
const distance = @sqrt(dx * dx + dy * dy + dz * dz);
e -= (body.mass * bodies[j].mass) / distance;
}
}
return .{ .result = .{ .energy = e } };
}
~event print_energy { energy: f64 }
| done {}
~proc print_energy {
std.debug.print("{d:.9}\n", .{energy});
return .{ .done = .{} };
}
~event parse_args {}
| parsed { n: u32 }
~proc parse_args {
const args = std.process.argsAlloc(std.heap.page_allocator) catch unreachable;
defer std.process.argsFree(std.heap.page_allocator, args);
if (args.len < 2) {
std.debug.print("Usage: {s} <iterations>\n", .{args[0]});
unreachable;
}
const n = std.fmt.parseInt(u32, args[1], 10) catch unreachable;
return .{ .parsed = .{ .n = n } };
}
// ============================================================================
// Main flow: Using Koru ~for for the HOT LOOPS
// ============================================================================
// Start simple: just test the outer simulation loop with ~for
// The body loops are still in process_all_pairs for now
~event process_all_pairs { bodies: []Body, dt: f64 }
| done {}
// This uses Koru ~for for the OUTER loop
~process_all_pairs = for(0..5)
| each i |> for(i.val+1..5)
| each j |> process_pair(bodies: bodies, i: i.val, j: j.val, dt: dt)
| done |> _
| done |> done {}
~event update_all_positions { bodies: []Body, dt: f64 }
| done {}
~update_all_positions = for(0..5)
| each k |> update_position(body: &bodies[k.val], dt: dt)
| done |> _
| done |> done {}
~parse_args()
| parsed p |> initialize_bodies()
| initialized init[mutable] |> offset_momentum(bodies: init.bodies[0..])
| adjusted |> calculate_energy(bodies: init.bodies[0..])
| result r1 |> print_energy(energy: r1.energy)
| done |> for(0..p.n)
| each |> process_all_pairs(bodies: init.bodies[0..], dt: 0.01)
| done |> update_all_positions(bodies: init.bodies[0..], dt: 0.01)
| done |> calculate_energy(bodies: init.bodies[0..])
| result r2 |> print_energy(energy: r2.energy)
| done |> _
// LANGUAGE SHOOTOUT: N-body Gravitational Simulation
// Tests: Float arithmetic, loop optimization, numerical computation
// Threshold: 1.20x (within 20% of hand-optimized Zig)
//
// CRITICAL: This implementation uses PROPER EVENT DECOMPOSITION
// We test Koru's event-driven architecture, NOT "can we call fast Zig code"
//
// Event decomposition:
// - initialize_bodies: Create planetary system
// - offset_momentum: Zero out system momentum (sun at rest)
// - calculate_energy: Compute total energy (kinetic + potential)
// - calculate_interactions: Update velocities from gravitational forces
// - update_positions: Update positions from velocities
// - print_energy: Output energy value
//
// This proves:
// ✅ Event dispatch is zero-cost
// ✅ Multi-event flows compile to straight-line code
// ✅ Event composition equals direct function calls
//
// OPTIMIZATION: Uses slices instead of arrays to avoid copying 280 bytes per event!
const std = @import("std");
~import "$std/control"
const PI = 3.141592653589793;
const SOLAR_MASS = 4 * PI * PI;
const DAYS_PER_YEAR = 365.24;
const Body = struct {
x: f64,
y: f64,
z: f64,
vx: f64,
vy: f64,
vz: f64,
mass: f64,
};
// ============================================================================
// Event 1: Initialize planetary bodies
// ============================================================================
~event initialize_bodies {}
| initialized { bodies: [5]Body }
~proc initialize_bodies {
// Sun, Jupiter, Saturn, Uranus, Neptune
const bodies_data = [_]Body{
.{ // Sun
.x = 0, .y = 0, .z = 0,
.vx = 0, .vy = 0, .vz = 0,
.mass = SOLAR_MASS,
},
.{ // Jupiter
.x = 4.84143144246472090e+00,
.y = -1.16032004402742839e+00,
.z = -1.03622044471123109e-01,
.vx = 1.66007664274403694e-03 * DAYS_PER_YEAR,
.vy = 7.69901118419740425e-03 * DAYS_PER_YEAR,
.vz = -6.90460016972063023e-05 * DAYS_PER_YEAR,
.mass = 9.54791938424326609e-04 * SOLAR_MASS,
},
.{ // Saturn
.x = 8.34336671824457987e+00,
.y = 4.12479856412430479e+00,
.z = -4.03523417114321381e-01,
.vx = -2.76742510726862411e-03 * DAYS_PER_YEAR,
.vy = 4.99852801234917238e-03 * DAYS_PER_YEAR,
.vz = 2.30417297573763929e-05 * DAYS_PER_YEAR,
.mass = 2.85885980666130812e-04 * SOLAR_MASS,
},
.{ // Uranus
.x = 1.28943695621391310e+01,
.y = -1.51111514016986312e+01,
.z = -2.23307578892655734e-01,
.vx = 2.96460137564761618e-03 * DAYS_PER_YEAR,
.vy = 2.37847173959480950e-03 * DAYS_PER_YEAR,
.vz = -2.96589568540237556e-05 * DAYS_PER_YEAR,
.mass = 4.36624404335156298e-05 * SOLAR_MASS,
},
.{ // Neptune
.x = 1.53796971148509165e+01,
.y = -2.59193146099879641e+01,
.z = 1.79258772950371181e-01,
.vx = 2.68067772490389322e-03 * DAYS_PER_YEAR,
.vy = 1.62824170038242295e-03 * DAYS_PER_YEAR,
.vz = -9.51592254519715870e-05 * DAYS_PER_YEAR,
.mass = 5.15138902046611451e-05 * SOLAR_MASS,
},
};
return .{ .initialized = .{ .bodies = bodies_data } };
}
// ============================================================================
// Event 2: Offset momentum (sun at rest) - MUTATES bodies in place!
// ============================================================================
~event offset_momentum { bodies: []Body }
| adjusted {}
~proc offset_momentum {
var px: f64 = 0.0;
var py: f64 = 0.0;
var pz: f64 = 0.0;
for (bodies) |body| {
px += body.vx * body.mass;
py += body.vy * body.mass;
pz += body.vz * body.mass;
}
bodies[0].vx = -px / SOLAR_MASS;
bodies[0].vy = -py / SOLAR_MASS;
bodies[0].vz = -pz / SOLAR_MASS;
return .{ .adjusted = .{} };
}
// ============================================================================
// Event 3: Calculate total energy (kinetic + potential)
// ============================================================================
~event calculate_energy { bodies: []const Body }
| result { energy: f64 }
~proc calculate_energy {
var e: f64 = 0.0;
for (bodies, 0..) |body, i| {
// Kinetic energy
e += 0.5 * body.mass * (body.vx * body.vx + body.vy * body.vy + body.vz * body.vz);
// Potential energy (pairwise)
var j = i + 1;
while (j < bodies.len) : (j += 1) {
const dx = body.x - bodies[j].x;
const dy = body.y - bodies[j].y;
const dz = body.z - bodies[j].z;
const distance = @sqrt(dx * dx + dy * dy + dz * dz);
e -= (body.mass * bodies[j].mass) / distance;
}
}
return .{ .result = .{ .energy = e } };
}
// ============================================================================
// Event 4: Print energy value
// ============================================================================
~event print_energy { energy: f64 }
| done {}
~proc print_energy {
std.debug.print("{d:.9}\n", .{energy});
return .{ .done = .{} };
}
// ============================================================================
// Event 5: Calculate gravitational interactions - MUTATES bodies in place!
// Single responsibility: ONLY velocity updates from forces
// ============================================================================
~event calculate_interactions { bodies: []Body, dt: f64 }
| updated {}
~proc calculate_interactions {
var i: usize = 0;
while (i < bodies.len) : (i += 1) {
var j: usize = i + 1;
while (j < bodies.len) : (j += 1) {
const dx = bodies[i].x - bodies[j].x;
const dy = bodies[i].y - bodies[j].y;
const dz = bodies[i].z - bodies[j].z;
const distance = @sqrt(dx * dx + dy * dy + dz * dz);
const mag = dt / (distance * distance * distance);
bodies[i].vx -= dx * bodies[j].mass * mag;
bodies[i].vy -= dy * bodies[j].mass * mag;
bodies[i].vz -= dz * bodies[j].mass * mag;
bodies[j].vx += dx * bodies[i].mass * mag;
bodies[j].vy += dy * bodies[i].mass * mag;
bodies[j].vz += dz * bodies[i].mass * mag;
}
}
return .{ .updated = .{} };
}
// ============================================================================
// Event 6: Update positions from velocities - MUTATES bodies in place!
// Single responsibility: ONLY position updates
// ============================================================================
~event update_positions { bodies: []Body, dt: f64 }
| advanced {}
~proc update_positions {
for (bodies) |*body| {
body.x += dt * body.vx;
body.y += dt * body.vy;
body.z += dt * body.vz;
}
return .{ .advanced = .{} };
}
// ============================================================================
// Event 7: Parse command line argument
// ============================================================================
~event parse_args {}
| parsed { n: u32 }
~proc parse_args {
const args = std.process.argsAlloc(std.heap.page_allocator) catch unreachable;
defer std.process.argsFree(std.heap.page_allocator, args);
if (args.len < 2) {
std.debug.print("Usage: {s} <iterations>\n", .{args[0]});
unreachable;
}
const n = std.fmt.parseInt(u32, args[1], 10) catch unreachable;
return .{ .parsed = .{ .n = n } };
}
// ============================================================================
// Main flow: Orchestrate all events with ZERO-COPY slice passing!
// Bodies array lives on the stack and is mutated in place through slices
// ============================================================================
~parse_args()
| parsed p |> initialize_bodies()
| initialized init[mutable] |> offset_momentum(bodies: init.bodies[0..])
| adjusted |> calculate_energy(bodies: init.bodies[0..])
| result r1 |> print_energy(energy: r1.energy)
| done |> for(0..p.n)
| each |> calculate_interactions(bodies: init.bodies[0..], dt: 0.01)
| updated |> update_positions(bodies: init.bodies[0..], dt: 0.01)
| done |> calculate_energy(bodies: init.bodies[0..])
| result r2 |> print_energy(energy: r2.energy)
| done |> _
Test Configuration
Compiler Flags:
-Doptimize=ReleaseFastPost-validation Script:
#!/bin/bash
# Post-validation: Check performance is within threshold
#
# Compares Koru performance against Zig baseline
# Success: ratio < threshold
# Failure: ratio > threshold → investigate and fix compiler
set -e
THRESHOLD_FILE="THRESHOLD"
if [ ! -f "$THRESHOLD_FILE" ]; then
echo "⚠️ No THRESHOLD file found"
echo " Creating default threshold: 1.20 (within 20%)"
echo "1.20" > THRESHOLD
fi
THRESHOLD=$(cat "$THRESHOLD_FILE")
# ============================================================================
# Run benchmark if results don't exist
# ============================================================================
if [ ! -f "results.json" ]; then
echo "⚠️ No benchmark results found (results.json missing)"
echo " Running benchmark..."
bash benchmark.sh
fi
if [ ! -f "results.json" ]; then
echo "❌ FAIL: Benchmark did not produce results.json"
exit 1
fi
# ============================================================================
# Parse results and calculate ratio
# ============================================================================
# Check if jq is installed
if ! command -v jq &> /dev/null; then
echo "⚠️ jq not installed (needed to parse benchmark results)"
echo " Install with: brew install jq (macOS) or apt install jq (Linux)"
echo " Skipping performance validation..."
exit 0
fi
# hyperfine results.json structure:
# {
# "results": [
# { "command": "C (gcc -O3)", "mean": 0.123, ... },
# { "command": "Zig (ReleaseFast)", "mean": 0.125, ... },
# { "command": "Koru → Zig", "mean": 0.135, ... }
# ]
# }
# Extract times
C_TIME=$(jq -r '.results[] | select(.command == "C (gcc -O3)") | .mean' results.json)
ZIG_TIME=$(jq -r '.results[] | select(.command == "Zig (ReleaseFast)") | .mean' results.json)
KORU_TIME=$(jq -r '.results[] | select(.command == "Koru → Zig") | .mean' results.json)
# Calculate ratios
KORU_VS_ZIG=$(echo "scale=4; $KORU_TIME / $ZIG_TIME" | bc -l)
ZIG_VS_C=$(echo "scale=4; $ZIG_TIME / $C_TIME" | bc -l)
KORU_VS_C=$(echo "scale=4; $KORU_TIME / $C_TIME" | bc -l)
# ============================================================================
# Display results
# ============================================================================
echo ""
echo "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━"
echo " Performance Results: N-Body Simulation"
echo "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━"
echo ""
echo " C (gcc -O3): ${C_TIME}s [gold standard]"
echo " Zig (ReleaseFast): ${ZIG_TIME}s [our target]"
echo " Koru → Zig: ${KORU_TIME}s [event-driven]"
echo ""
echo " Ratios:"
echo " Koru / Zig: ${KORU_VS_ZIG}x"
echo " Zig / C: ${ZIG_VS_C}x"
echo " Koru / C: ${KORU_VS_C}x"
echo ""
echo " Threshold: ${THRESHOLD}x"
echo ""
# ============================================================================
# Check threshold
# ============================================================================
# Compare Koru vs Zig (this is what we care about)
if (( $(echo "$KORU_VS_ZIG > $THRESHOLD" | bc -l) )); then
echo "❌ PERFORMANCE REGRESSION!"
echo ""
echo " Koru is ${KORU_VS_ZIG}x slower than Zig baseline"
echo " Threshold is ${THRESHOLD}x"
echo " Exceeded by: $(echo "scale=1; ($KORU_VS_ZIG - $THRESHOLD) * 100" | bc -l)%"
echo ""
echo "Action Required:"
echo " 1. Check emitted code: output_emitted.zig"
echo " 2. Compare to baseline: reference/baseline.zig"
echo " 3. Look for extra function calls, allocations, bounds checks"
echo " 4. Identify missing optimizations"
echo " 5. Fix compiler, do NOT relax threshold"
echo ""
echo "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━"
exit 1
elif (( $(echo "$KORU_VS_ZIG < 0.95" | bc -l) )); then
echo "🎉 PERFORMANCE IMPROVED!"
echo ""
echo " Koru is FASTER than baseline (${KORU_VS_ZIG}x)"
echo " This is unusual - verify correctness carefully"
echo " May indicate measurement noise or compiler cleverness"
echo ""
echo "✅ Performance within threshold"
echo ""
echo "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━"
else
OVERHEAD=$(echo "scale=1; ($KORU_VS_ZIG - 1) * 100" | bc -l)
MARGIN=$(echo "scale=1; ($THRESHOLD - $KORU_VS_ZIG) * 100" | bc -l)
echo "✅ Performance within threshold"
echo ""
echo " Overhead: ${OVERHEAD}%"
echo " Margin: ${MARGIN}% below threshold"
echo ""
echo "Context:"
echo " - Zig is ${ZIG_VS_C}x vs C (baseline overhead)"
echo " - Koru adds $(echo "scale=1; ($KORU_VS_ZIG - $ZIG_VS_C) * 100" | bc -l)% on top of that"
echo ""
echo "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━"
fi
exit 0